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Abstract — A multi-stage diagonally-implicit Runge-Kutta 
(DIRK) algorithm is applied to discretize the time variable in 
transient magnetic field computation using finite element 
method. The formulations both for linear and nonlinear 
problems are deduced. By comparing with the backward 
Euler’s method which is the most widely used algorithm in 
finite element method, a numerical experiment shows that the 
DIRK algorithm can significantly improve the accuracy 
without increasing computing time. 

I. INTRODUCTION 
Transient magnetic field computation using finite 

element method (FEM) has been widely used to simulate 
dynamic operation of electromagnetic devices [1-2]. The 
time variable is usually discretized by using the backward 
Euler’s method [3]. How to effectively increase the 
accuracy of solutions and reduce the computing time is 
always an interesting topic in computing electromagnetic 
community [4-5]. By the research results in mathematical 
community, one possibility to improve the accuracy of 
discretizing the derivatives with respect to the time 
variable is to use a one-step multi-stage diagonally-implicit 
Runge-Kutta (DIRK) algorithm [6]. It is an implicit one 
step method and it is stable. In one step it solves the 
differential equations on multi-stages so that the accuracy 
of the solution can be improved. 

In this paper a multi-stage DIRK is introduced to 
transient magnetic field FEM. The formulation of DIRK 
for FEM problems is deduced. Its performance is compared 
with the backward Euler’s method by solving a simple 
problem which has analytical solution. The numerical 
experiment shows that the 3-stage DIRK algorithm can 
reduce the numerical error from 15% to 98% with the 
same computing time of the backward Euler’s method.   

II. FORMULATIONS 
The DIRK method can be applied to both 2-

dimensional (2-D) and 3-dimensional (3-D) FEM. For 
simplicity, the discussion will be limited to a 2-D problem 
defined in an x-y plane. The basic equations of transient 
magnetic field – circuit coupled problem can lead to solve 
the following initial-value problem [2]: 

      PxDxC 








dt
d ,      00 xx t ,     end0 , ttt  ,     (1) 

where the matrix D is an appropriate sized constant matrix 
associated with the eddy-current region in magnetic field 
and the energy-storage elements in electric circuits. The 
coefficient matrix C in general is nonlinear in the 

independent variables. The right-hand side column matrix 
P is as a source term which changes with time.  

The differential matrix equation (1) can be written as 
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The S-stage DIRK method has the recursive formula: 
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where S is the number of stages; the step size 1 kk ttt . 

sX   is the stage derivative and is the estimation of 

)( 1 tct sk  x . 
At the time tctt sks  1 , the stage variable is:  
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Applying Runge-Kutta solution schema at each stage, 
we have 
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where for linear problem: 
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Substituting (6) and (7) into (5), we have 
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Rearranging (8), we have 
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To calculate the stage variables, we solve the above 
nonlinear equation system S times. 

For nonlinear problems, rename sX   to be u, 
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To calculate the stage variables, we have to solve the above 
nonlinear equation system S times. The Newton-Raphson 
(N-R) iterative formula is: 
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where n is the index for u to select the n-th approximation 
in N-R iteration; un-1 is the solution of the last step of N-R 
iteration; and 
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The Jacobian matrix is the same as that of the magnetic 
static field. Therefore 
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Equation (13) can also be simply written as at t = ts: 
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Solving for 1 nnn uuu  will hopefully converge to 
the solution of the s-th stage variable. If it takes too many 
iterations to converge, it is a signal of highly nonlinear 
system. The DISK solver can detect that and then decrease 
the time step or change the RK schema to a higher order 
one. The numerical error per step can be estimated by: 
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where bs and sb̂  are associated with the lower and higher 
order RK methods respectively; each has S elements [6]. 

For 3-stage DIRK method, 
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This formula is strongly S-stable [6]. 
III. EXAMPLE 

The proposed method is used to compute the magnetic 
field of an electromagnet as shown in Fig. 1. It is excited 
by a voltage source: 
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which is the first three harmonic orders of a rectangular 
function, where =250 rad/s. The model depth is 160 mm. 
The number of turns is 1000. Because of the symmetric 
distribution of the magnetic field, only half of the region is 
in the solution domain. It is assumed that the permeability 
of the iron core is constant so that the analytical solution of 
the current in the coil is available. When using backward 
Euler method, the time step size is 0.1 ms. When using 
DIRK method, the time step size is 0.3 ms. Because in one 
step DIRK method needs to solve the algebraic matrix 
equation three times, the total computing time of the two 
methods are the same.  The numerical average errors of the 
computed current by using the two methods are listed in 
Table I. it can be observed that the DIRK algorithm can 
reduce the error 15% if the simulation time is from time 0 
s to 20 s, and reduce the error 98% if the simulation time is 
from time 0 s to 2000 s. The advantage of DIRK is 
significant. 

             
(a) Dimensions (unit: mm)                (b) Flux distribution 

Fig. 1. An electromagnet. 

TABLE I 
COMPARISON OF NUMERICAL ERRORS BETWEEN BACKWARD 

EULER METHOD AND DIRK METHOD 

Integration 
time tend 

The average error of 
backward Euler 

method  
t = 0.1 ms 

The average 
error of DIRK 
t = 0.3 ms 

The average 
error reduced 

by using 
DIRK 

20 s 0.004690 0.003947 15.8% 
200 s 0.004472 0.000423 90.5% 

2000 s 0.004450 0.000071 98.4% 
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